Methane Decarbonization in Hot Products of Laminar Premixed Flames

Mohammad Javad Afroughi, Farjad Falahati, Jason Olfert, Larry Kostiuk

BACKGROUND

Methane decarbonization (pyrolysis) is viewed as a potential method to produce hydrogen (or heat or electricity if the hydrogen is used as a fuel) without CO_2 emissions.

At a sufficiently high temperature and in the absence of

METHODOLOGY

f.

An experimental set-up is designed to assess H₂ production properties of generated carbon during methane and decarbonization.

oxygen (O_2) ,

 $CH_4 \rightarrow C_{(s)} + H_2$

where

- hydrogen (H_2) can be used as a carbon-free fuel,
- the solid carbon $(C_{(s)})$ can be sold for use in industrial products.

Condition of Experiment/Method:

- Using two different laminar premixed flames (propane-air and methane-air) to produce an O_2 deficient, hot, gas stream with a temperature around 1150 ± 50 °C, and with the same total flow rate at 36.425 ± 0.005 Std L/min.
- Injecting different flow rates of methane (0.5-5 Std L/min) into the hot gas products to be decarbonized.

Quantification Technique:

- Emission measurement of
- gaseous products using a gas chromatographer,
- carbon particulates using a scanning mobility particle sizer.

Hydrogen production efficiency with different flow rates of decarbonized methane

Variability of H_2 production with decarbonized methane flow rate is for both premixed the same flames.

- H_2 production drops with the increase in decarbonized methane flow rate, due to dependency on
- residence time,
- temperature.

Number-size distribution of generated carbon particulates with **propane-air** premixed flame

Particle size distributions fall into the same trend using propane-air premixed flame, except for high of decarbonized rates flow methane (5 Std L/min).

Exhaust tube

point (150 °C)

number concentrations Particle show a peak around 100 nm, premixed propane-air using flame.

Number-size distribution of generated carbon particulates with methane-air premixed flame

Particle size distributions show similar variability using methane-

CONCLUSION

In this study, methane decarbonization in hot products of propane-air and methane-air premixed flames is investigated as a new way of H₂ production with reduced CO_2 emissions.

air premixed flame, except for high flow rates of decarbonized methane (5 Std L/min).

Most of the generated particles with methane-air premixed flame are found to be smaller than 30 nm.

Results show that residence time (inversely proportional to decarbonized methane flow rate) has larger effects on H_2 production and carbon particulate properties, while type of the premixed flame (propane-air or methane-air) only affects size distribution of particles.

It is found that H₂ production decreases dramatically for small residence times (high flow rates of decarbonized methane, e.g. 5 Std L/min).

Department of Mechanical Engineering, University of Alberta 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada

