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BACKGROUND

Methane is a common industrial waste and potent greenhouse gas that can serve
as a feedstock for methanotrophic bacteria. These bacteria can use methane to
produce value-added products such as biofuels.

A thorough understanding of the physiology and regulation of methanotrophic
bacteria is imperative, including a more narrow focus on industrially relevant
strains to analyze regulatory effects of further media refinement (i.e., nutrients
available, copper concentration, acidic conditions, etc.).

The multi-level “~-omics” approach will demonstrate how different growth

conditions affect the structure, function, and metabolism of the different species,
leading to a more efficient optimization process for the production of the biofuels
(alcohols, isoprenoids), biofuel precursors (isoprene), and other value-added
products.
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RESULTS

Growth optimization in varying carbon/nitrogen/copper conditions

FUTURE DIRECTIONS

Analysis and mapping of the metabolome of strains of interest under

different growth conditions.
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activities (e.g. anaerobic digestion and pyrolysis) as feedstock.
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