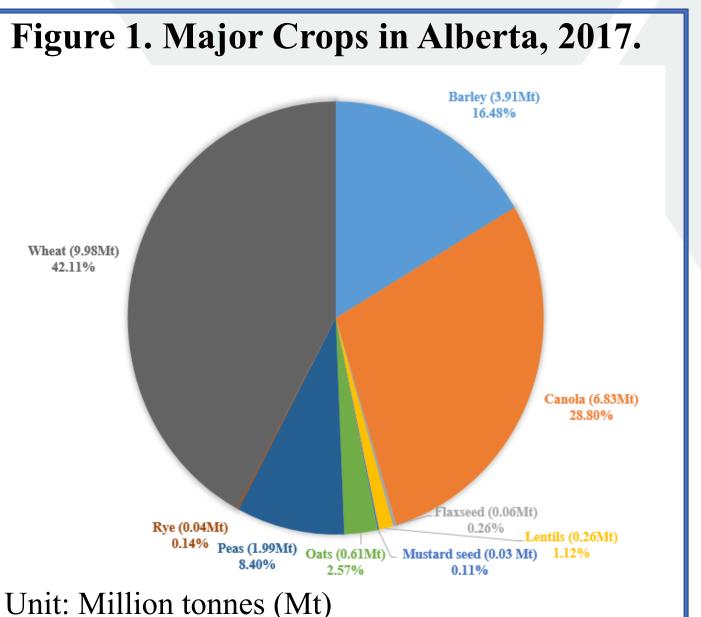
Potential Ethanol Biorefinery Sites in Alberta Based on Agricultural Residues


Yanan Zheng, Claire Doll, Grant Hauer, Martin Luckert^{*}, and Feng Qiu¹

80km Supply

Radius

BACKGROUND

- Alberta produces large quantities of agricultural crops and residues that could be used as feedstock for an emerging bioenergy industry (Figure 1) (Statistics Canada, 2018).
- The sustainable biomass supply and other economic features (e.g., the plant's road network accessibility) are key considerations in selecting potential biorefinery sites (Thomas et Unit: Million tonnes (Mt)

RESULTS

- Total available biomass from barley, canola, oats, and wheat in Alberta is approximately 22.4 million tonnes (Mt), with canola straw making up the largest share (45.2%). Applying an 80-kilometer supply radius, 4 plants could be built in Alberta assuming a plant capacity of 1.8 Mt/year (Table 1). Figure 2 maps the spatial distribution of biomass and the locations of possible future biorefineries.
- The 4 possible future plants are found within the counties of Beaver, Kneehill, Vulcan, and Sturgeon (Table 2). If all plants were built, they would process 67% of total available biomass in Alberta.
- ↔ When the accessible biomass for a possible site exceeds 3.3 Mt, another site could be possibly built nearby to process the surplus.

al., 2013).

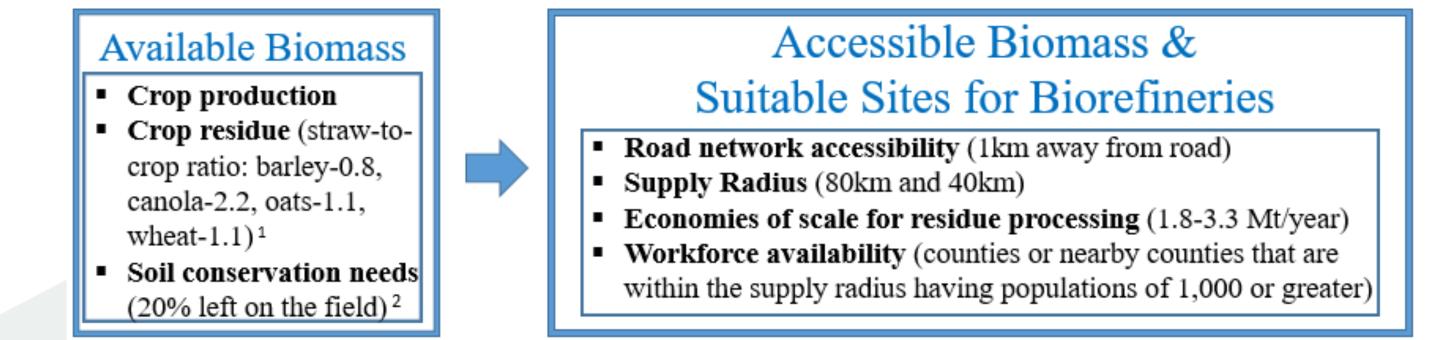
- A number of previous studies have investigated potential biorefinery sites (e.g., Argo et al., 2013; Eksioglu et al., 2009; Gonzales and Searcy, 2017; Sultana and Kumar, 2012;)
- We build on the previous work and conduct a GIS-based analysis in Alberta at a high spatial resolution (i.e. 9.7km × 9.7km, the township level) and with residues from four major crops (barley, canola, oats, and wheat).

AIMS AND OBJECTIVES

- Examine the spatial distribution of available feedstocks and some economic considerations, with the aim of identifying possible future biorefinery sites.
- Some economic considerations:
 - Road network accessibility (Sahoo et al., 2016)
 - Supply radius (Gonzales and Searcy, 2017)
 - \succ Economies of scale for residue processing (Muth et al., 2013)
 - ➤ Workforce availability (Zhang et al., 2011)

• When the supply radius is reduced to 40 kilometers, there are 2 sites that could be built with enough biomass supply (i.e., greater than 1.8 Mt/year). They would be sited in the counties of Flagstaff and Kneehill.

Figure 2. Spatial Distribution of Feedstocks and Location of Possible Future Biorefinery Sites. Crop residue (tonne) 0 - 3280 3281 - 9920 9921 - 18120 18121 - 27510 27511 - 39130 39131 - 71070 Top 1 Top 2 Top 3 Tob 4 80km supply radius 40km supply radius Edmonton


40km Supply

Radius

DATA AND METHODS

Data: 2015 township level crop residue data (including barley, canola, oats, and wheat) from the Bio-Resource Management System (BRIMS).

Conceptual Framework

1 Bailet-Stamler et al. (2007); 2 Stumborg et al. (1996)

Table 1. Accessible Crop Residues for Potential Biorefinery Sites. Table 2. Locations of Possible Future Biorefinery Sites. 80km Supply Radius 40km Supply Radius 80km Supply 40km Supply Top 1 Top 2 Top 3 Top 4 Top 1 Top 2 Radius Radius Wheat 1.939 1.439 1.176 0.824 0.632 0.769 Location County County Barley 0.424 0.884 0.520 0.221 0.362 Location 0.188 0.107 0.029 0.010 0.031 0.007 Flagstaff NW Oats 0.081 W Top 1 Beaver Canola 2.730 1.784 0.815 1.029 1.279 0.765 SW NW Kneehill Top 2 Kneehill 0.023 0.018 0.316 0.009 0.014 0.011 Other SE Vulcan Top 3 2.8 4.2 1.8 5.2 2.4 2.0 Total NW Top 4 Sturgeon Unit: Million tonnes (Mt)

Calgary

County Boundary

IMPLICATIONS

REFERENCES

- Argo, A., Tan, E., Inman, D., Langholtz, M., Eaton, L., Jacobson, J., and Graham, R. 2013. Investigation of Biochemical Biorefinery Sizing and Environmental Sustainability Impacts for Conventional Bale System and Advanced Uniform Biomass Logistics Designs. Biofuels, Bioproducts and Biorefining, 7(3), 282-302.
- Bailet-Stamler, S., Samon, R., and Ho Lem, C. 2007. Assessing the Agri-Fibre Biomass Residue Resources for Creating a BIOHEAT Industry in Alberta. Final report presented to Alberta Agriculture and Food. Available at: <u>http://tiny.cc/aaklry</u>.
- Eksioglu, S. D., Acharya, A., Leightley, L. E., and Arora, S. 2009. Analyzing the Design and Management of Biomass-to-biorefinery Supply Chain. Computers and Industrial Engineering, 57, 1342-1352.
- Applying an 80-kilometer supply radius, our study found sites for 4 plants that could be possibility built in Alberta assuming a plant capacity of 1.8 Mt/year.
- Our research provides a staring point for investigating economic viability of biorefineries and may inform future site selections.

FES PROJECT OVERVIEW

- Gonzales, D. S., and Searcy, S. W. 2017. GIS-based Allocation of Herbaceous Biomass in Biorefineries and Depots. Biomass and *Bioenergy*, 91, 1-10.
- Muth, D. J., Langholtz, M. H., Tan, E. C. D., Jacobson, J. J., Schwab, A., Wu, M. M., Argo, A., Brandt, C. C., Cafferty, K. G., Chiu, Y., Dutta, A., Eaton, L. M., and Searcy, E. M. 2014. Investigation of Thermochemical Biorefinery Sizing and Environmental Sustainability Impacts for Conventional Supply System and Distributed Pre-processing Supply System Designs. Biofuels, Bioproducts and Biorefining, 8(4), 545–567.
- Sahoo, K., Hawkins, G. L., Yao, X. A., Samples, K., and Mani, S. 2016. GIS-based Biomass Assessment and Supply Logistics System for A Sustainable Biorefinery: A Case Study with Cotton Stalks in the Southeastern US. Applied Energy, 182, 260-273.
- Statistics Canada. 2018. Estimated Areas, Yield, Production, Average Farm Price and Total Farm Value of Principal Field Crops, in Metric and Imperial Units. CANSIM Table 001-0017.
- Stumborg, M. A., Townley-Smith, L., and Coxworth, E. 1996. Sustainability and Economic Issues for Cereal Crop Residue Export. Canadian Journal of Plant Science, 76, 669–673.
- Sultana, A. and Kumar, A. 2012. Optimal Siting and Size of Bioenergy Facilities Using Geographic Information System. Applied Energy. 94, 192-201.
- Thomas, A., Bond, A., and Hiscock, K. 2013. A GIS Based Assessment of Bioenergy Potential in England within Existing Energy Systems. Biomass and Bioenergy, 55, 107-112.
- Zhang, F., Johnson, D. M., and Sutherland, J.W. 2011. A GIS-based Method for Identifying the Optimal Location for A Facility to Convert Forest Biomass to Biofuel. Biomass and Bioenergy, 25, 3951-3961.

¹Department of Resource Economics and Environmental Sociology, 515 General Service Building, University of Alberta, Edmonton, AB, T6G 2H1

*Principal investigator. Email: mluckert@ualberta.ca

T01-P02 Investment Decisions and Policy Analysis

This project will inform investment decisions and policy development by integrating economic modelling – designed for decision making under uncertainty – into the biomass energy supply chains.

We would like to acknowledge Silvacom for providing data from the Bio-Resource Management System (BRIMS). This research was also made possible thanks to funding from the Canada First Research Excellence Fund as a part of the University of Alberta's Future Energy System research initiative.

Ν